Challenges and rewards of teaching an online color science course

ISCC Online Seminar Dec 5, 2016

Susan Farnand & Michael Murdoch <u>farnand@cis.rit.edu</u> <u>mmpocs@rit.edu</u>

Introductions

Mike Murdoch

Susan Farnand

We Want Questions & Discussion

To avoid audio issues...

Please stay muted

Please post questions using the Questions/Chat window

If necessary, we can unmute to discuss further

	1
Computer audio	
Phone call	
You are connected at	
+1(213)929-4232	
Access Code: 274-775-099	
Talking: ann laidlaw	
Questions/Chat	5
Q: why is the sky blue?	*
Q: why rainbows?	
Q' can dogs see rainbows?	
	*
	Send
ISCC December Webinar Webinar ID: 737-694-275	
GoToWebinar	

RIT is Online

8,426 online enrollments
10% of all course sections
6% of all credit hours
27% of students take an online course
16% of faculty teach an online course

https://www.rit.edu/ritonline/

Colleges must have online presence, but teaching – and learning – online is not always easy

http://ecologicsolutions.co.uk/view/12b62ef9f6501affa196cafa6194f314

MCSL is Online

http://mcsl.rit.edu

http://www.rit.edu/cos/colorscience/ac_ssc.php

Course Structure

10 weeks, each including:

- 2 readings
- Quiz per reading
- Online discussion
- Mini-project or online activity
- Deliverable: 3-5 page project report

Week 10 project is student's choice

Reading List

Week	Reading	Due Date
1	Newton	6/3
	Fairchild – Color Order Systems	
2	Fairchild – Vision	6/10
	Hunt – Light sources	
3	Berns – Color Measurement	6/17
	Berns – Precision and Accuracy	
4	Reinhard - Colorimetry	6/24
	Wright – 1931 observer	
5	Berns – uniform color spaces	7/1
	Luo – CIEDE2000	
6	von Kries – Chromatic Adaptation	7/8
	Reinhard – Color Appearance vocabulary	
7	Reinhard – Color Appearance phenomena	7/15
	Fairchild – CIECAM02	
8	McCamy – Macbeth ColorChecker	7/22
	Fairchild & Wyble – Display Characterization	
9	Johnson – color management	7/29
	Reinhard - HDR	
10	Hunter – gloss	8/5
	Fleming - translucency	

Quiz Example

	Conter	nt Calendar	Classlist 0	Groups	Dropbox	Discussions	Chat	Surveys	Quizzes	Grades
Color Vision - Preview										
Time Limit: 0:30:00	Time Left: 0:28:11	Michael Mur	doch: Attempt	t 1					Exit Pr	eview
Questions	Question 3 (1	l point)								
0 of 4 questions saved Page 1:	Why are cones	important for	visual acuity?							
1	🔘 a) The gar	nglion-to-cone	ratio is highe	r than th	ne ganglion	-to-rod ratio				1
Page 2:	🔿 b) There a	re many more	cones than ro	ds						
2	🔿 c) The con	ies are more se	ensitive than t	he rods						
Page 3:	🔿 d) The cor	nes are densely	/ packed in the	e retina						
Quiz Status	Save									
Nothing to Save	Previous Page	Next Page				Page 3 of 4				

Some Interesting Discussions...

Regarding Color Differences:

"... the amount of difference, it is not specified in which direction, towards which color/hue."

Regarding Macbeth Color Checker:

"40-year-old color checker patches are designed for color film response... should we design a new color checker corresponding to our current digital camera or display?"

	Content	Calendar Classlist Groups Dropbox Discussions Chat Su	rveys Quizzes Grade			
Search Topics Q		Color Order Systems Project *	🖶 Print			
冥 Overview		O Due June 6 at 11:00 AM				
My Bookmarks	2	Please complete the activity below. Click on the link. Further instructi activity.	ions are included in the			
👕 Course Schedule		Download Send to Binder				
Table of Contents	33	100 % 2 of 2 topics complete				
Introductory Information 1		The second se				
Readings	13	Color Order Online Activity 👻	4			
Color Order Systems 🥑 Project		Color Order Systems (video)	4			
Color Vision Project	0					
27. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0					
Color Measurement Project						
Color Measurement Project Colorimetry Project	0					

$R \cdot I \cdot T$

Color Order Systems Mini-Project

5 Students' Color Orderings

$R^{\cdot}I \cdot T$

Color Vision Project: F-M 100 Hue Test

http://www.color-blindness.com/farnsworth-munsell-100-hue-color-vision-test

Colorimetry & Lab Overview

Colorimetry & Lab Overview

Color Measurement Project

No hands-on lab experience!

Spectral reflectance data file provided (as if students had measured them with the spectrophotometer)

Color Measurement

Development of a virtual spectrophotometer underway

- Calibration
- Drag-and-drop "Sample shelf"
- Spectral data plot
- Download data files with pre-computed variability

Colorimetry and more...

 With the color measurement data, students calculated tristimulus values, chromaticities, CIELAB values, and, using these, the impacts of changing light sources and observers

CIELAB example results

Chromatic Adaptation & Color Appearance

Color Systems

- Color display characterization
- Color management

Questions or Comments?

Susan Farnand & Michael Murdoch farnand@cis.rit.edu mmpocs@rit.edu

http://www.drawing-factory.com/feedback/

