NEW INDIVIDUAL MEMBERS

We are glad to welcome to the Inter-Society Color Council the following new individual members: Mr. Philip J. Lawson, New York City, commercial artist and designer and instructor at Pratt Institute; Dr. Edwin M. Blake, New York City, retired mathematics professor who is building up a method of abstract design which obtains its motives from geometry, and whose study of color is incidental to this; Mr. Carl R. Smiddy, of the Glidden Company, Cleveland, Ohio; Dr. Peter C. Goldmark, Color Television Engineer, Columbia Broadcasting System, New York City; Mr. Edwin I. Stearns, Calico Chemical Division, American Cyanamid Company, Bound Brook, N. J.; Miss Grace H. Jones, stylist, New York City; Mr. William Clark, Congoleum-Nairn Company, Kearney, N. J.; Lt. Stanley Backer, Quartermaster Corps, U. S. Army; Dr. B. Roger Philip, Department of Psychology, Graduate School of Fordham University.

EXECUTIVE COMMITTEE MEETING

The ISCC Executive Committee met in Washington on June 17. Program plans for the 1943 meeting were discussed. The time and place were not decided except that the annual session will be held in February or March of 1943. No Popular Session has been planned. A Discussion Session will include panel discussion of one or more topics on which each delegation will be asked to have a representative prepared to speak. There will be a Technical Session at which the Color Aptitude and Color Blindness Tests will be discussed. Such a number of matters came up at the committee meeting in discussion of the Problems Committee report, concerning the importance of various test methods and the psychological procedures involved in the development of tests such as the one on which the Council is working, that the Executive Committee thought that a Technical Session of the Council could well be spent in presenting these subjects more fully to the Council as a whole.

Under authority provided by letter ballot of April 18 (News Letter No. 4 1, page 2), the Executive Committee appointed Dorothy Nickerson to serve as special trustee on the Board of Trustees of the Munsell Color Foundation. Deane B. Judd has been appointed in a similar capacity by the Director of the National Bureau of Standards. Blanche R. Bellamy, Manager of the Munsell Color Company, is the third special trustee. Four additional trustees remain to be appointed.

ASSOCIATION FOR COLOR RESEARCH

The Association for Color Research, Chicago, held a dinner meeting on June 1st at Normandy House Restaurant. Four members were asked to bring in each an outline of activities and programs for the next season; and every member was invited to contribute suggestions or criticisms and take part in the open forum discussion which followed the remarks of the quartet. These four members were: Miss Anne Swainson, Director of Bureau of Design, Montgomery Ward & Co.; Mr. Albert E. Russell,
Malta and Sicily. The island of Malta with its satellite Gozo is the last remnant of a land-bridge from Africa to Europe and a haven for westward-travelling mariners. The monuments left by a dense farming population are megalithic temples (built of gigantic stones), and labyrinthine rock-cut burial vaults. Even today one village church in Malta is roofed over with a dome larger than that of St. Paul's Cathedral. The architectural features and interesting cult objects of the Maltese culture are outside our scope. The pottery was a fine polished gray ware, recalling Syria, Palestine and Crete in forms and appearance, except that decoration was by means of small clay disks (studded ware); others were decorated with finely incised spiral patterns. There was also a ware with matt red geometric designs painted on a buff ground. The Maltese land-bridge is continued by Sicily, where an early neolithic civilization also arose, probably before the neolithic revolution reached the Italian mainland. The Sicilian villages were communities of wattle-and-daub huts at sites known as Stentinallo, Megara and Matrensa in the southeast of the island. Here the economy included the breeding of several animals, cultivation of cereals, fishing and some trade. The technically good pottery was a gray or red ware, slipped and burnished, with geometrical basketry decoration executed with the finger-nails, a sharp pointed implement, or the edge of a shell, usually with white filling. There was also a ware from Megara painted red and black on buff.

Still farther west lies the Iberian peninsula (Spain and Portugal). Here, during the third millennium arose two different neolithic cultures. Their relative and absolute chronology is uncertain, as to some extent is the route by which they reached Spain. But both the older survivors of the mesolithic hunters and at least a part of those bearing the neolithic culture derived from Africa. This question is related to that of the spread of agriculture across Europe. The cultivation of wheat began somewhere near the border of Syria and Palestine. From there the progress of agriculture can be traced across the Aegean Sea and along the Danube to Switzerland. On the other hand, this stream appears to have met, west of the Rhine, another traceable by its pottery, moving northeast from Spain. This ware had as its model leather bags derived from pendant animal skin. This "bag ware", red in color, is found widely distributed in western Europe, appearing in Switzerland and Germany from the coast. Its point of ingress was apparently Gibraltar and its starting point Morocco. But still earlier it derived from the eastern Mediterranean and ultimately Tell Arpachiyah of the time of the Tell Halaf culture, at least not later than the fourth millennium B. C. Besides the pottery, a related element of the African culture is the megalithic (large stone) tomb, which is also traceable to Arpachiyah. The evidence of the pottery depends on a number of decorative and other details which will not be given here. In one of the two cultures of Spain previously mentioned, of which the type site was El Garcel in Almeria (southeast Spain), the leathery bag ware was very like neolithic wares from Egypt, and a form of jar with pointed base resembled Gerzean (pre-dynastic Egyptian) wares, while curious oval jars resembled North African ones. Besides cultivating cereals with sickles armed with serrated flint teeth, the Almerians cultivated olive trees and grape vines, and domesticated cattle. The cattle were probably acquired from Danubian peasants in Switzerland. Besides the red bag ware, there was an Egyptian-looking plain dark ware.

In addition to the culture of the Almerians, who lived in round or oval huts, there
were what are known as the Cave Cultures. These belonged to poorer and more backward communities relying largely on hunting. In fact, though many of their communities date to the Copper Age which was later than El Garcel, the art of this folk was evidently descended from the naturalistic Southeast Spanish group of paleolithic art; and the Cave Dwellers themselves from the older hunters. In the period of which we write, their cave walls were painted with conventionalized wild and domestic animals, episodes of the chase, pastoral scenes, sledges and, in the north, even wheeled carts. In turn, from these representations are descended Copper Age pictures on vases and tomb walls. The neolithic cave pottery is richly incised in the cardial style, that is, with horizontal and vertical patterns excuted with the edge or back of a shell. A "ladder pattern" was also frequent. The color was black to reddish. Somewhat similar wares are found all around the western Mediterranean sea.

BIBLIOGRAPHY

H. Kalmus; Nature 143, 429-31 (1941); physiology and ecology of cuticle colour in insects (14 rules relating color and physiological properties); see criticism by G. D. H. Carpenter, Nature 143, 693 and reply by Kalmus, pp. 693-4 (1941)

D. Keilin & E. F. Hartree; Nature 143, 75-7 (1941); absorption spectra of hemoglobin in solution and in red blood corpuscles

J. G. Kerr (Sir John G.); Nature 143, 527 (1941); use of paint in camouflage (distinction of "structural" and pigment camouflage)

A. Kiss & P. Csookán; Z. anorg. allgem. Chem. 245, 355-64 (1941); light absorption of nickel thiocyanate solutions

A. Kiss & P. Csookán; Z. physik. Chem. Al86, 27-40 (1941); light absorption of cobalt thiocyanate solutions; II, water-nonelectrolytes as solvents

A. Kiss & M. Richter; Z. physik. Chem Al87, 211-26 (1940); light absorption by cobalt chloride solutions; I, nonaqueous solutions

Kodak Ltd.; Brit. Pat. 531,312 (1941); (photographic) color-forming developers and color development

Kodak Ltd.; Brit. Pats. 536,339 and 538,914 (1941); processes of color development

R. Koetschau; Brennstoff-Chem. 22, 90-7, 101-7 (1941); color constants of viscous mineral oils

L. H. Lampitt; C. H. F. Fuller & N. Goldenberg; J. Soc. Chem. Ind. 60, 99-111 (1941); absorption spectra of the starch-iodide complex

E. H. Land & C. D. West; Canad. Pat. 399,553 (1941); light-polarizing material

G. O. Langstroth, K. B. Newbound & W. W. Brown; Canadian J. Research 19 A, 103-3 (1941); a direct-reading microphotometer
C. G. Lemon; Brit. Pat. 520,967 (1940); color-comparison apparatus (for color of clays, paint powders and pharmaceutical preparations and whiteness of flours)

Lever Bros. & Unilever Ltd.; Brit. Pat. 531,047 (1940); decolorizing glyceride oils

N. N. Livshitz; Compt. rend. (Doklady) Acad. Sci. URSS 23, No. 5 (1940); laws of binocular color mixture

A. Loewenstein & G. Donald; Arch. Ophthal. (Chicago) 26, 551-64 (1941); a color stereoscopic phenomenon; through Psychol. Abstr. 16, No. 2, Feb. 1942; see also Verhoeff

J. Long; Rayon Text. Monthly 22, 179-80 (1941); fluorescent lamps; application

G. F. Lothian; J. Sci. Instr. 18, 200-2 (1941); photoelectric Fluorimeter

M. Luckiesh; Illum. Eng. 37, 113-4 (Feb. 1942); blue light undesirable for blackouts

M. Luckiesh & L. L. Holladay; J. Opt. Soc. Amer. 31, 523-30 (1941); penetration of fog by light from sodium and tungsten lamps

M. Luckiesh & F. K. Moss; J. Opt. Soc. Amer. 31, 594-5 (1941); variation of visual acuity with fixation distance

M. Luckiesh & F. K. Moss; J. Opt. Soc. Amer. 31, 595-7 (1941); refraction of various spectral qualities of light by the human eye

M. Luckiesh & F. K. Moss; School & Society 53, No. 1376 (1941); review in Nature 148, 321 (1941); action of the eyes in reading

M. Luckiesh & F. K. Moss; J. Franklin Inst. 231, No. 4, p. 323 (1941); visibility and seeing

M. Luckiesh & F. K. Moss; Illum. Eng. 37, No. 2, 81-8 (Feb. 1942); vision and seeing under light from fluorescent lamps

M. Luckiesh & A. H. Taylor; Gen. Elec. Rev. 44, 217-21 (1941); light and ultraviolet meters

D. L. MacAdam; Photog. J. 81, 333-51 (1941); three-color reproduction; theory and photographic aspects

D. L. MacAdam; Photog. J. 81, 373-37 (1941); subtractive color mixture and color reproduction

N. Macbeth; Amer. Dyestuff Rptr. 30, 615-9; Text. Colorist 63, 584-6; Rayon Text. Monthly 22, 623-6 (all Oct. 1941); color and light sources

K. Mackenzie-Richards; J. Oil Col. Chem. Assoc. 22, 262-76 (1939); some aspects of the fading of coloured pigments (omitted in earlier News Letters through error)
W. M. McKeon & W. D. Wright; Proc. Phys. Soc. 52, part 4, No. 292, p. 464 (1940); characteristics of protanomalous vision

G. Mackinney; J. Biol. Chem. 140, 315-22 (1941); absorption of light by chlorophyll solutions

C. W. McNeil; Indus. Finishing 18, No. 2, 29-30,32,37-8 (1941); luminous paints (blackout finishes; a review)

Magnesium Elektron Ltd.; Brit. Pat. 535,067 (1941); production of colored protective layers on castings of magnesium-base alloys

J. T. Mireles Malpica; Gen. Elec. Rev. 44, 439-43 (1941); blocking-layer cell color-temperature pyrometer

H. Manchester; Reader's Digest, June 1941, pp. 154-5; meet the color engineer (color in display rooms, hospitals, school rooms, factories and ledgers; from Future, May 1941)

J. Mandelbaum; Arch. Ophthal. 26, 203-39 (1941); dark adaptation; some physiologic and clinical considerations

J. Mandelbaum & E. U. Mintz; Amer. J. Ophthal. 24, 1241-54 (1941); sensitivities of color receptors as measured by dark adaptation

Mantle Lamp Co. of America, Inc.; Germ. Pat. 688,516 (1940); elimination or reduction of color formation in natural or synthetic resins, fats or oils

J. Marchais; Text. Colorist 63, 564 (1941); the six sacred colors of Tibet

A. Martelloni; Germ. Pat. 697,042 (1940); apparatus for measuring the transparency and turbidity of fluid media

E. N. Mason & Sons Ltd. & D. J. Norman; Brit. Pat. 539,031 (1941); preparation of (diazo-compound) light-sensitive layers

Mathieson Alkali Works; Argentine Pat. 50,863; equiv. to Brazil Pat. 25,190 and U. S. Pat. 2,260,367 (A. L. Dubau to Mathieson Alkali Works); nylon and similar materials are bleached with chlorite ions, which treatment improves the dyeing properties of nylon, especially in respect to greater uniformity of color

C. E. K. Mees; Amer. Photogr. (Photograph Technique) 36, 8-10 (March 1942); direct processes for making photographic prints in color

E. Meier; Farben-Ztg. 45, 503-4 (1940); modern luminescent colors (pigments)

M. G. Mellon; J. Opt. Soc. Amer. 31, 648 (1941); naming spectroscopic analytical methods

Metrawatt A.-G. Fabrik Elektrischer Messgeräte; French Pat. 847,731 (1939); photoelectric photometer

Metrawatt Akt.-Gesell.; Germ. Pat. 681,951 (1939); electric photometer
H. H. Meyer (to Clairol N. V.); Brit. Pat. 531,741 (1941); device for the dyeing and bleaching of human hair

W. Meyer; Wien. Pharm. Wohnschr. 74, 96-7 (1941); colors indicating temperatures in industry and the laboratory (using Co and Ni salts, methenamine and water)

E. B. Middleton (to Du Pont Film Corp., now Photo Products Dept. of E. I. du Pont de Nemours & Co.); U. S. Pat. 2,255,077 (1941); filter dyes for color photography

C. C. M ill & J. W. Colquhoun; J. Oil Col. Chem. Assoc. 24, 237-56 (1941); covering power and print-through of black news inks

C. W. Miller; J. Opt. Soc. Amer. 31, 477-82 (1941); matrix algebra and color reproduction

H. E. Millson; Indus. Engin. Chem., News Ed. 12, 1266 (1941); Paint Mfr. 12, 79-80 (Apr. 1942); fluorescent blackout preparations

I. Mischung; Kolloid.-Z. 94, 153-7 (1941); through Chem. Abstr. 35, 3901 (1941); light absorption of phosphorescent dyes (rhoduline orange) in gelatin (and anomalous Beer's law effect)

J. A. Mitchell (to E. I. du Pont de Nemours & Co.); U. S. Pat. 2,251,752 (1941); thin, flexible, transparent, non-fibrous pellicle having a surface size consisting essentially of an invisible discontinuous layer of evenly distributed fine solid particles

J. Molland; Tids. Kjemi Bergvesen Met. 1, 49-52 (1941); absorption spectra (from 2300 to 7200 A.) of some organic compounds

P. Moon; J. Opt. Soc. Amer. 31, 482-7 (1941); colors of ceramic tiles

P. Moon; J. Opt. Soc. Amer. 31, 723-9 (1941); wall materials and lighting

D. G. Moore & R. S. Hunter; J. Amer. Ceram. Soc. 24, 167-70 (1941); application of liquid specular-gloss standards

R. H. Müller; Indus. Engin. Chem., Anal. Ed. 13, 667-754 (1941); instrumental methods of chemical analysis (includes 313 references and 191 photographs of apparatus. Pages 684-9 are on spectrophotometry, 701-11 on photometry, 711-3 on chemical colorimetry, 714-5 on fluorometry and 715-7 on turbidimetry)

H. D. Murray; J. Oil Col. Chem. Assoc. 24, 205-14 (1941); colour terminology; discussion (by several persons) 214-30

H. D. Murray; Paint Var. Prod. Mgr. 22, 36-43, 53 (Feb. 1942); colour terminology (paper before Colour Group of the Physical Society, London)

H. D. Murray; Brit. Pat. 532,958 (1941); light-sensitive diazo-compounds (for diazo-type printing)

H. D. Murray (to Norton & Gregory Ltd.); U. S. Pat. 2,277,409 (1942); light-sensitive layer for diazo-type printing containing a diazo compound
H. D. Murray & A. Tyrrell; Brit. Pat. 538,869 (1941); production of light-sensitive diazotype layers

G. V. L. N. Murty; Proc. Indian Acad. Sci. A 14, 43-7 (1941); colour analysis and colorimetry; I, determination of nitrate (analysis with K and E Color Analyzer of colors produced in two nitrate tests; dominant wavelength, purity and brightness)

A. L. Narayan & C. K. Ananthasubrahmanyan; Indian J. Physics 14, pt. 5, 393-9 (1940); precision direct-reading (amplifying photoelectric) spectrophotometer

G. L. Natanson; J. Phys. Chem. USSR 14, 15-29 (1940); photochemistry of fluorescent dyes

National Paint, Varnish & Lacquer Assoc., Sci. Sect.; Paint Var. Prod. Mgr. 22, 7-8, 10 (1942); blackout paints; concealment paints

P. G. N. Nayyar; Proc. Indian Acad. Sci. A 13, 483-97, 534-42 (1941); luminescence, absorption and scattering of light in diamonds; I, fluorescence; II, phosphorescence

P. G. N. Nayyar; Proc. Indian Acad. Sci. A 14, 1-17 (1941); luminescence, absorption and scattering of light in diamonds; III, absorption

J. H. Nelson; Light and Lighting 34, 109-17 (1941); application of ultra-violet lamps

D. Nickerson & S. M. Newhall; J. Opt. Soc. Amer. 31, 587-91 (1941); central notations for ISCC-NBS color names

T. Nigami (to Iwaki Glass K. K.); Japan. Pat. 133,337 (1939); light filter (transparent to ultra-violet)

D. Norman & W.W.A. Johnson; J. Opt. Soc. Amer. 31, 85-6 (1941); note on a spectrophotometric study of Central American and Asiatic jades

D. J. Norman (to E. N. Mason & Sons. Ltd.); Brit. Pat. 539,031 (1941); method of preparing light-sensitive diazo-compound layers

V. V. Obalko; Veseyoyuz. Nauch. Issledovatel. Inst. Tobach. Makhoroch. Prom. No. 142, 210-84 (in English, 274-5) (1940); through Chem. Abstr. 36, 1734 (1942); influence of light on tobacco (including color changes)

T. Ogata; Chem. Rev. (Japan) 5, 317-29 (1939); light-sensitive dyes and dyes for color photography
J. W. Orelup; U. S. Pat. 2,262,466 (1941); petroleum distillate, tending to be unstable in the presence of light, containing certain stabilizing agents

J. W. Orelup; U. S. Pat. 2,265,189 (1941); composition for coloring petroleum products comprising the combination of diphenyl with an oil-soluble dye

A. Page; Brit. Printer 53, No. 318, 259 (1941); Rev. Current Lit. Paint Colour Var. & Allied Indus. 14, 189 (1941); luminous painting and illustrations

Paint-Analyst; Paint Var. Prod. Mgr. 22, 44-50 (1942); analysis of paint materials by means of the light-electric colorimeter

C. E. Palmer; Amer. J. Pub. Health 31, 1063-7 (1941); dark adaptation characteristics of private-school children measured with adaptometer

A. E. Parker; paper at 1941 ISCC-ASTM Symposium on Color; Washington, March 5, 1941; publ. by Amer. Soc. Test. Mat.; pp. 47-60; spectrophotometry and color evaluation

J. B. Parry; Nature 147, 782-3 (1941); esthetic appeal of Ostwald's chromatic standards

J. L. Parsons; Paper Trade J. III, 133 (1940); Tech. Assoc. Papers 23, 473 (1940); introduction to symposium on spectrophotometry in the pulp and paper industries (1940 ISCC-TAPPI Symposium)

J. L. Parsons; Paper Trade J. 114, Tappi Sect., 122-4 (March 5, 1942); report of the TAPPI delegates to the Inter-Society Color Council; and appendix: proposed American Defense Emergency Standard for the Specification and Description of Color

Paterson Parchment Paper Co.; Brit. Pat. 487,403 (1938); Parchmentizing paper (increasing transparency)

H. C. Paulsen (to Standard Oil Development Co.); U. S. Pat. 2,263,273 (1941); method of stabilizing the color of a light petroleum distillate

J. W. Perry; Nature 149, 691-2 (1941); colour measurement

J. W. Perry; Nature 149, 247-8 (1942); colour measurement (reply to criticism of his letter (preceding reference) by Smith, Guild and Donaldson)

C. A. Peters & B. C. Redmon; J. Chem. Educ. 17, 525-8 (1940); phenolphthalein and methyl orange (structures and colors)

F. T. Peters (to E. I. du Pont de Nemours & Co.); U. S. Pat. 2,273,890 (1942); a softened regenerated cellulose article containing a color-stabilizing agent

W. D. Peterson & A. Weissberger (to Eastman Kodak Co.); U. S. Pat. 2,271,230 (1942); a light-sensitive photographic element including a filter layer comprising gelatin having therein a non-diffusing dye of specified composition

Philips Lamps Ltd.; Brit. Pat. 534,341 (1941); production of photographic contrasts on a tannable layer of a binding agent sensitized by a diazonium compound whose light-decomposition product acts to tan the binding agent, and also provided with copper salt
Philips Lamps Ltd.; Brit. Pat. 539,314 (1941); light-sensitive layer on a (water-soluble) support, by suspending a resin solution of a diazonium compound in an organic liquid, in which is also suspended a coupling component, whereupon the dispersion thus obtained is applied on to the support and the organic liquid subsequently volatilized

O. W. Pineo (to Calco. Chem. Co.); Brit. Pat. 532,755 (1939); spectrophotometer

O. W. Pineo (to Amer. Cyanamid Co.); U. S. Pat. 2,233,062 (1941); double monochromator

F. H. G. Pitt; Chem. & Indus. 60, 817 (1941); colour blindness and its importance in industry (talk before the Colour Group of the Physical Society)

Polaroid Corp.; J. Sci. 18, 206 (1941); light-polarizing material ("polaroid H-glass filter")

A. C. Poulter; J. Sci. Instr. 18, 166-7 (1941); simple photoelectric brightness meter

A. Prichotko; Acta Physicochim. USSR 12, 559-72 (1940); absorption of light in solid and liquid ammonia (shift of spectra with physical state)

Printex; Text. Colorist 63, 298 (1941); colorimetric determination of indigo (reference to work of J. Lotchius, which see)

F. Pruckner; Z. Physik. Chem. A 187, 257-75 (1940); light absorption and constitution of chlorophyll derivatives; A 188, 41-59 (1941); absorption of the dihydroxy compounds

E. Putseiko; J. Tech. Phys. USSR 11, 486-8 (1941); selenium photocell for light measurements

J. A. Radley; J. Soc. Dyers Col. 58, 49-51 (1942); some aspects of fluorescence

W. G. Raffé; J. Dec. Art 62, 32 (1942); the camouflage of buildings

C. V. Raman; J. Franklin Inst. 232, 203-11 (1941); scattering of light (producing opalescence) in crystals

S. Ramgaswami, T. R. Seshadre & V. Venkateswarlu; Proc. Indian Acad. Sci. 13 A, 316-21 (1941); remarkable fluorescence of certain coumarin derivatives

B. S. V. Raghava Rao; Current Sci. 10, 198-9 (1941); optical sensitization and photovoltaic effect of dyes

M. S. Rassudova & Y. N. Tolgskii; Byull. Malyarnoi Tehk. 1939, No. 6, 15-8; Khim. Referat. Zhur 1940, No. 1, 118; the yellowing of oil paints with white pigments

J. E. G. Reyment; Biol. Bull. 77, 354-63 (1939); dark adaptation and phototropism in Dinettes
W. Reeder; Iowa State Coll. J. Sci. 16, 125-7 (1941); proteins: fluorescence

M. Richter; Arch. tech. Messen 111, T 99-100 (1940); colorimetry by the comparison method; I, trichromatic colorimeters; 113, T 125-4 (1941); II, colorimetry with apparatus other than trichromatic colorimeters

M. Richter (to Carl Zeiss); U. S. Pat. 2,234,278 (1941); trichromatic colorimeter

L. A. Riggs; Proc. Soc. Expt. Biol. Med. 48, 204-7 (1941); continuous and reproducible records of electrical activity of human retina

I. Riskin & T. Zimatskaya; J. Appl. Khim. USSR 13, 1596-1601 (1940); through Chem. Abstr. 35, 3819 (1941); optical constants of pigment dyes, and the relation between these and the technological properties of these dyes, I

J. M. Robertson & R. H. V. M. Dawton; J. Sci. Instr. 18, 126-8 (1941); photometry of X-ray crystal diffraction diagrams

S. Roy; J. Proc. Inst. Chem. India 13, 14-27 (1941); photocells and photoelectric colorimeters (general survey)

R. Ruedy; Canad. J. Research 19 A, 117-25 (1941); absorption of light and heat radiation by small spherical particles; I, absorption of light by carbon particles

J. T. Rule; J. Opt. Soc. Amer. 31, 124-9 (1941); shape of stereoscopic images

J. T. Rule; J. Opt. Soc. Amer. 31, 325-34 (1941); geometry of stereoscopic projection

J. C. Russell; Engin. Mining J. 142, 53-4 (1941); photoelectric comparator for colorimetric copper assay

T. Sakaki & G. Aita (to Iwaki Glass K. K.); Jap. Pat. 153,249 (1939); light filter (for D line)

R. H. Sawyer; paper at 1941 ISCC-ASTM Symposium on Color, Washington, March 5, 1941; publ. by Amer. Soc. Test. Mater., pp. 23-36; hiding power and opacity

I. I. Schattenstein & E. A. Irzailevitsch; Acta Physicochim. USSR 12, 73-98 (1940); method of spectrophotometry for solutions in liquified gases; absorption spectra (in the visible region) of solutions of nitro- and azo-compounds in liquid ammonia (and liquid sulfur dioxide)

G. Scheibe; Z. Elektrochem. 47, 16-8 (1941); light absorption and constitution of dyes (general discussion introducing a symposium)

F. Scheurer; U. S. Pat. 2,237,165 (1941); color-matching device

K. Schinzel (to Kodak Ltd.); Brit. Pat. 533,569 (1941); production of a colored image in a photographic emulsion

A. A. Schischlovski; Phys. Trans. Ukrain. Acad. Sci. 9, 19-27 (1940); spectrophotometry of (light of) low intensity

O. Schmidt; Ber. Deut. Chem. Gesell. 74 B, 987-1001 (1941); shifts in the absorption spectra of mononuclear aromatic compounds
W. Schneider; (to General Aniline & Film Corp.); U. S. Pat. 2,276,548 (1942); process of producing a photographic multicolor picture

G. Schwarzenbach; Z. Elektrochem. 47, 40-62 (1941); through Chem. Abstr. 35, 3521 (1941); dyes: acidity constants, resonance energies and light absorption

F. Scofield; paper at 1941 ISCC-ASTM Symposium on Color, Washington, March 5, 1941; publ. by Amer. Soc. Test. Mater., pp. 18-22; color specifications of transparent materials

F. Scofield; Natl. Paint, Var. & Lacq. Assoc. Circ. No. 631 (1942); measuring the opacity of blackout paints

S. T. Serghiesco; J. Opt. Soc. Amer. 31, 109-12 (1941); distribution of radiant energy (light) in a group of lattices

A. S. Shakov; Zavodskaya Lab. 10, 470-3 (1941); photocolorimetric determination of tungsten

F. L. Simons (to G. LaMonte & Son); U. S. Pat. 2,262,822 (1941); safety paper suitable for checks, drafts, etc. having incorporated therewith specified substances adapted to react with a chlorine bleach to produce a stain
A. Smekal; Ann. Physik 33, 340-4 (1940); optical production of color centers (a review)

C. N. Smith (to Carbide & Carbon Chem. Corp.); U. S. Pat. 2,260,543 (1941); coloring articles of thermoplastic material in a specified manner

T. Smith, J. Guild & R. Donaldson; Nature 142, 76 (1942); colour measurement; reply to letter of J. W. Perry (see reference above; also letter of V. G. W. Harrison on same page, reference to follow in later issue)

W. M. Smith & W. J. Sparks (to Standard Oil Development Co.); U. S. Pat. 2,257,201 (1941); preparation of a specified resinous condensate soluble in hydrocarbon solvents to give a fluorescent colored solution

H. A. Snow; U. S. Pat. 2,240,722 (1941); spectrophotometric color-analyzing apparatus

H. E. Stanton; Bull. Math. Biophys. 3, 113-20 (1941); neural mechanism for discrimination; IV, monocular depth perception

L. H. Stauffer; Electronics 14, No. 10, 32-4, 117-8 (1941); characteristics of fluorescent materials (review)

A. Steigmann; Chem. & Indus. 60, 889-90 (1941); luminol light reactions

C. P. Stewart; Edinb. Med. J. (4) 48, 217-37 (1941); nutritional factors in dark adaptation

R. W. Stewart; J. Assoc. Off. Agr. Chem. 24, 910-5 (1941); report on (automatic recording) spectrophotometric color testing (of F and C dyes and hair rinses)

A. H. Stuart; Paint Mfr. 11, 222-4 (1941); what colour is paint? (effect of lighting; use of spectrophotometer and trichromatic colorimeter)

R. V. Subrahmanian; Proc. Indian Acad. Sci. 15 A, 467-82 (1941); spectral character of reflection by a regularly stratified medium

V. A. Sukhikh & T. B. Perel'man; Legkaya Prom. 17, 132-6 (1938); Chem. Zentr. 1939, II, 2448; manufacture and use of the photoelectric step spectrophotometer

S. A. Talbot & W. H. Marshall; Amer. J. Ophthalm. 24, 1255-63 (1941); physiological studies on neural mechanisms of visual localization and discrimination

TAPPI; see Tech. Assoc. Pulp Paper Indus.

A. H. Taylor; J. Opt. Soc. Amer. 31, 105-6 (1941); errata (title should read: foot-candle-hour integrator for daylight; see also criticism by L. E. Varden, J. Opt. Soc. Amer. 31, 507-8 (1941) and reply by Taylor, p. 508: "Reply to L. E. Varden's comments...."

A. H. Taylor; J. Opt. Soc. Amer. 31, 738-9 (1941); low brightness meter
F. V. Taylor; J. Expt. Psychol. 29, 75-80 (1941); change of size of afterimage in total darkness

G. J. Taylor; Cotton 105, No. 3, 105-9 (1941); fluorescent lamps: application

R. H. Thouless; Nature 142, 418-21 (1938); Psychol. Abstr. 15, No. 11, (1941); eye and brain as factors in visual perception; also News Letter No. 31, p. 8 (incomplete ref.)

C. H. S. Tupholme; Silk & Rayon 15, 706 (1941); gloss-measuring apparatus (the Cambridge "Lustrometer")

J. E. Tyler & A. C. Hardy; J. Opt. Soc. Amer. 30, 587-90 (1940); analysis of the original Munsell color system (one of a series of papers on the system; incomplete reference in News Letter No. 32)

J. A. Van den Akker, P. Nolan & W. A. Wink; Paper Trade J. 114, TAPPI Sect., 46-52 (1942); physical basis of standardization of brightness measurement

L. E. Warden; J. Opt. Soc. Amer. 31, 507- (1941); comment on "A footcandle-hour integrator for daylight" by A. H. Taylor

J. Velisek; Tech. Hlidka Kozeluzska 17, 21-8 (1941) (German summary); measurement of colors (maximum spectral sensitivity of rods and cones)

F. H. Verhoeff; Arch. Ophthal. (Chicago) 26, 914 (1941); a color stereoscopic phenomenon (polemic); see also Loewenstein and Donald

T. Vickerstaff; J. Oil Col. Chem. Assoc. 25, 8-18 (1942); the physical aspects of colour matching

H. E. Vincent & R. A. Sawyer; J. Opt. Soc. Amer. 31, 639-43 (1941); new microphotometer
A. Vogt; Schweiz. med. Wchnschr. 71, 432-3 (1941); genetic linkage of macula with both iris and ocular pigment in man

J. A. Wainwright & J. Allan (to Celanese Corp. of Amer.); U. S. Pat. 2,249,069 (1941); effects on textile fabrics produced locally by means of an albumen precipitant and a composition containing albumen, a pigment and a coloring agent

G. Wald; J. Gen. Physiol. 25, 235-45 (1941); visual system of euryhaline fishes

W. T. Walsh; Trans. Illum. Engin. Soc. (London) 6, 117-20 (1941); development of low illumination and brightness-measuring instruments

G. Weber; Licht 8, 145-7 (1938); through Brit. Chem. Abstr. A, Nov. 1941, p. 431; recording photometer with photocell

A. Weil; Monatschr. Psychiatr. Neurol. 100, 98-128 (1938); through Brit. Chem. Abstr. 1941, 1000; visual disturbances in hypoglycaemia

E. Weitz, F. Schmidt & J. Singer; Z. Elektrochem. 47, 65-72 (1941); through Chem. Abstr. 35, 3513 (1941); heteropolar adsorbates: color

A. J. Walls & W. R. Smith; J. Phys. Chem. 45, 1055-60 (1941); absorption spectrum of suspensions of carbon black (used to calculate particle-size distribution)

L. V. Whitney; J. Opt. Soc. Amer. 31, 714-22 (1941); general law of diminution of light intensity in natural waters and percent of diffuse light at different depths

C. A. Winkler et al; Canad. J. Research 17 D, 29-34 (1939); color of meat; II, effect of desiccation on the color of cured pork; 18 D, 435-41 (1940); color of meat; III, an improved color comparator for solids; 19, 225-32 (1941); Canadian Wiltshire bacon; XXI, objective color comparisons of Canadian and Danish bacons, and their relation to subjective observations of color quality

J. Winkler; Zeiss Nachr. 3, 158-63 (1939); Chem. Zentr. 1939, II, 3727; measurements with the Pulfrich photometer with spectral resolution of the light

A. H. Woodcock; Canad. J. Research 19 D, 253-7 (1941); photoelectric fluorimeter

W. E. Wornum; J. Oil Col. Chem. Assoc. 24, 103-1 (1941); Physical Society Colour Group

W. D. Wright; criticism of Peddie's (1940) paper; see Peddie, News Letter No. 37

A. J. Wuertz & E. C. Tobin (to E. I. Du Pont de Nemours & Co.); U. S. Pat. 2,268,400 (1941); oil-fluorescent dyes

V. E. Yarsley; Electrician, Aug. 8, 1941; review in Nature 148, 311-12 (1941); luminous plastics

S. Yates; Indus. Chemist 17, 150-2, 161, 204-6 (1941); coloring matters in cosmetics, I, II

E. Yogo; Japan J. Obstet. Gynec. 23, 149-59 (1940); effect of visible (red and blue) light on vegetative nervous system in animals