ABSTRACT

- Displays are viewed in ambient light
- Ambient light, necessary for e-paper, can disturb emissive display color
- Display characterization must include ambient lighting conditions
- New standards predict display color by combining optical measurements with ambient illumination models

OBJECTIVE

- The “perfect display” is betrayed as imperfect by reflected ambient light
- Measurements must predict display color in ambient lighting conditions

CHALLENGE

Ambient display colors will depend on:
- Illumination levels and spectra
- Type of display

EFFECT OF AMBIENT ILLUMINATION ON DISPLAY COLOR

<table>
<thead>
<tr>
<th>Illuminance E [lx]</th>
<th>Reference indoor</th>
<th>Reference outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MODEL ILLUMINATION

1. Measure the display’s spectral emission and reflection for each display color \(Q \).
 \[L_{Q,em}(\lambda) \]

2. Scale the display measurements to the actual irradiance spectra \(E(\lambda) \) of reference illumination.
 \[E_{dir}(\lambda) \cdot \cos \theta_S / \pi \]
 \[E_{hemi}(\lambda) / \pi \]
 \[R_{Q,dir}(\lambda, \theta_S) \cdot \cos \theta_S / \pi \]

PREDICT COLOR

3. Summarize all components of spectral radiance contributing to total spectral display radiance.
 \[= L_{Q,T}(\lambda) \]

4. Predict color gamut in ambient illumination:
 - Daylight-readable reflective display
 - Reflection of bright daylight overwhelms backlight of emissive display

CONCLUSION

- Standardized measurement methodology can predict color capability of displays in realistic lighting conditions