Relating Munsell to other systems in an elastic colour solid

Paul Green-Armytage
Munsell Centennial Symposium
2018
MUNSELL SYSTEM
OSTWALD SYSTEM
La Tourette-Cabardés
Town’s coat of arms

BMW logo

Bristol Rovers football team
Bath Races
Stills from Ivanhoe
Expo 67 Montreal
Colour array as used for their study of colour naming by Brent Berlin and Paul Kay. This array is similar to that used in the CBC design studio in Edmonton.
Study of relationships between colour names and colour appearance. Students chose felt markers that best fit their concepts for each name.
Subtractive mixture to neutral grey
Additive mixture to white
Painted discs used to find complementary pairs by partitive mixture – Pairs of discs were interleaved and spun at high speed to find combinations where the segments blended to a neutral grey.
Partitive mixture to grey
Chart to illustrate different complementary colour pairs (partners) as defined in different ways.
After-image partners

Subtractive partners

Partitive partners
Albert Munsell
Wilhelm Ostwald
Johannes Itten
NATURAL COLOUR SYSTEM (NCS)
Colour circles and colour triangles marked to indicate the hues and nuances of colours in the NCS
NATURAL COLOUR SYSTEM (NCS)

OSTWALD SYSTEM
OSTWALD SYSTEM

NATURAL COLOUR SYSTEM (NCS)
OSTWALD SYSTEM

NATURAL COLOUR SYSTEM (NCS)
Final invitation for

THE FORSIUS SYMPOSIUM ON
COLOUR ORDER SYSTEMS
and
Environmental Colour Design

to be held at
Nordiska Folkhögskolan
in Kungälv near Gothenburg
Sweden
August 25 to 29

Association Internationale de la Couleur
International Colour Association
Internationale Vereinigung für die Farbe

MIDTERM MEETING 1983
including meetings with the AIC Study Groups on
— Colour Order Systems
— Environmental Colour Design

Latest date for registration:
July 1
While Munsell’s parameters “value” and “chroma” are very useful for visual analysis of single colours by interpolation, the NCS parameters “blackness” and “chromaticness” … seem … more suitable for solving problems of colour juxtaposition in environmental design. It is not the place here to prove this statement. The following hint may be enough: the same NCS nuance gives to colours of different hues an optimum of inner relationship keeping on the other hand the natural contrast in value analogous to the spectrum.

Werner Spillmann
Chips from the *Munsell Book of Color*.
Same value/chroma: 5/8

Chips from the NCS Colour Album
Same nuance: 3050
MUNSELL
Same value and chroma: 5/8

NCS
Same nuance: 3050
Measurement of visual lightness L:

Place the meter on top of the colour sample of which the lightness is to be determined.

Move the buttons to and fro over the colour sample.

The boundary line (the contour) between the colour sample and the grey of the meter appears to vary in distinctness.

When this boundary is minimally distinct, the grey and the colour sample in front of it are equally light.

Read off the lightness value L.

<table>
<thead>
<tr>
<th>L</th>
<th>Ljusreflektorfaktor (Luminous reflectance factor)</th>
<th>NCS SFS färgeverskning för golvprydnad (SFS colour notation of the grays)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise in colour transformation by Emma Fletcher
NATURAL COLOUR SYSTEM (NCS)

MUNSELL SYSTEM
HESSELGREN COLOUR SYSTEM
DIN COLOUR SYSTEM

Manfred Richter
OPTICAL SOCIETY OF AMERICA
UNIFORM COLOR SCALES
It cannot be otherwise than that these two systems, and all others, are sampling the same underlying world of color, even if very differently. They will without doubt continue to coexist because of the different needs their different guiding principles serve.
Joy Turner Luke

... color solids ... are practical tools.

... It is really beside the point to argue about whether any one of them is correct.